Comment on “ Accelerated Detectors and Temperature in ( Anti ) de Sitter Spaces ” Ted Jacobson

نویسنده

  • Ted Jacobson
چکیده

It is shown how the results of Deser and Levin on the response of accelerated detectors in anti-de Sitter space can be understood from the same general perspective as other thermality results in spacetimes with bifurcate Killing horizons. A detector with linear acceleration a in the Minkowski vacuum sees a thermal bath at the temperature T U = a/2π [1], while an inertial detector in de Sitter (dS) space of radius R sees a thermal bath in the de Sitter vacuum at the temperature T GH = 1/2πR [2]. What does an accelerated detector see in de Sitter space? This detector also sees a thermal bath, but at the temperature[3, 4, 5] T dS = (R −2 + a 2) 1/2 /2π. (1) Deser and Levin (DL) recently showed [5] that the same formula with R 2 → −R 2 gives in anti-de Sitter (adS) space the temperature seen by some uniformly accelerated detectors in any of three vacuum states, while the temperature for some other uniformly accelerated detectors vanishes! (In the adS case the class of accelerated world lines yielding (1) has acceleration bounded below by R −1 so the argument of the square root is bounded below by zero.)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comment on “Accelerated Detectors and Temperature in (Anti) de Sitter Spaces”

It is shown how the results of Deser and Levin on the response of accelerated detectors in anti-de Sitter space can be understood from the same general perspective as other thermality results in spacetimes with bifurcate Killing horizons. A detector with linear acceleration a in the Minkowski vacuum sees a thermal bath at the temperature TU = a/2π [1], while an inertial detector in de Sitter (d...

متن کامل

Accelerated Detectors and Temperature in ( Anti ) de Sitter Spaces

We show, in complete accord with the usual Rindler picture, that detectors with constant acceleration a in de Sitter (dS) and Anti de Sitter (AdS) spaces with cosmological constants Λ measure temperatures 2πT = (Λ/3 + a) ≡ a5, the detector ”5-acceleration” in the embedding flat 5-space. For dS, this recovers a known result; in AdS, where Λ is negative, the temperature is well defined down to th...

متن کامل

v 2 3 A ug 1 99 8 BRX TH 437 Equivalence of Hawking and Unruh Temperatures and Entropies Through Flat Space Embeddings

We present a unified description of temperature and entropy in spaces with either “true” or “accelerated observer” horizons: In their (higher dimensional) global embedding Minkowski geometries, the relevant detectors have constant accelerations aG; associated with their Rindler horizons are temperature aG/2π and entropy equal to 1/4 the horizon area. Both quantities agree with those calculated ...

متن کامل

Equivalence of Hawking and Unruh Temperatures Through Flat Space Embeddings

We present a unified description of temperature in spaces with either “true” or “accelerated observer” horizons: In their (higher dimensional) global embedding Minkowski geometries, the relevant detectors have constant accelerations aG, hence they measure the temperatures aG/2π associated with their Rindler horizons there. As one example of this equivalence, we obtain the temperature of Schwarz...

متن کامل

Mapping Hawking into Unruh thermal properties

By globally embedding curved spaces into higher dimensional flat ones, we show that Hawking thermal properties map into their Unruh equivalents: The relevant curved space detectors become Rindler ones, whose temperature and entropy reproduce the originals. Specific illustrations include Schwarzschild, Schwarzschild– ~anti-!de Sitter, Reissner-Nordström, and Bañados-Teitelboim-Zanelli spaces. @S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998